On the Early Development of Dispersion in Flow through a Tube with Wall Reactions

ثبت نشده
چکیده

This is a study on numerical simulation of the convection-diffusion transport of a chemical species in steady flow through a small-diameter tube, which is lined with a very thin layer made up of retentive and absorptive materials. The species may be subject to a first-order kinetic reversible phase exchange with the wall material and irreversible absorption into the tube wall. Owing to the velocity shear across the tube section, the chemical species may spread out axially along the tube at a rate much larger than that given by the molecular diffusion; this process is known as dispersion. While the long-time dispersion behavior, well described by the Taylor model, has been extensively studied in the literature, the early development of the dispersion process is by contrast much less investigated. By early development, that means a span of time, after the release of the chemical into the flow, that is shorter than or comparable to the diffusion time scale across the tube section. To understand the early development of the dispersion, the governing equations along with the reactive boundary conditions are solved numerically using the Flux Corrected Transport Algorithm (FCTA). The computation has enabled us to investigate the combined effects on the early development of the dispersion coefficient due to the reversible and irreversible wall reactions. One of the results is shown that the dispersion coefficient may approach its steady-state limit in a short time under the following conditions: (i) a high value of Damkohler number (say 10 ≥ Da ); (ii) a small but non-zero value of absorption rate (say 5 . 0 * ≤ Γ ). Keywords—Dispersion coefficient, early development of dispersion, FCTA, wall reactions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of Blood Vessel Wall Flexibility on the Temperature and Concentration Dispersion

The analysis of solute and thermal dispersion in pulsatile flow through the stenotic tapered blood vessel is presented. The present problem is an extension of the work done by Ramana et al. who considered the time-invariant arterial wall. In the present model, the flexible nature of the arterial wall through the obstruction (called stenosis) is considered and it is achieved with the he...

متن کامل

PULSATILE MOTION OF BLOOD IN A CIRCULAR TUBE OF VARYING CROSS-SECTION WITH SLIP FLOW

Pulsatile motion of blood in a circular tube of varying cross-section has been developed by considering slip flow at the tube wall and the blood to be a non- Newtonian biviscous incompressible fluid. The tube wall is supposed to be permeable and the fluid exchange across the wall is accounted for by prescribing the normal velocity of the fluid at the tube wall. The tangential velocity of the fl...

متن کامل

Investigation on Turbulent Nanofluid Flow in Helical Tube in Tube Heat Exchangers

In this study, the thermal characteristics of turbulent nanofluid flow in a helical tube in the tube heat exchanger (HTTHE) were assessed numerically through computational fluid dynamics (CFD) simulation. The findings of both the turbulent models: realizable k-epsion (k-ε) and re-normalisation group (RNG) k-epsilon were compared. The temperature distribution contours show that realizable and RN...

متن کامل

A Numerical Analysis for the Effect of Slip Velocity and Stenosis Shape on Non-Newtonian Flow of Blood (TECHNICAL NOTE)

The aim of this paper is to study the effect of slip velocity and shape of stenosis on non-Newtonian flow of blood through a stenosed arterial segment. Blood is modeled as Bingham-Plastic fluid in a uniform circular tube with a radially non-symmetric stenosis. The problem is investigated by a joint effort of analytical and numerical techniques. The influence of stenosis shape parameter, slip ve...

متن کامل

The Effect of Linear Change of Tube Diameter on Subcooled Flow Boiling and Critical Heat Flux

One of the major industry problems is the flow boiling, where reaching to the critical heat flux (CHF) condition can lead to a temperature jump and damage of the systems. In the present study, the effects of a uniform change in tube diameter on subcooled flow boiling and CHF was numerically investigated. The Euler-Euler model was used to investigate the relationship between the two liquid and v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009